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Abstract
The amorphous atomic structure of a melt-spun NiZr3 alloy was investigated using the
anomalous wide angle x-ray scattering (AWAXS) and reverse Monte Carlo (RMC) simulation
techniques. The AWAXS data were collected at four incident photon energies, including ones
close to the Ni and Zr K-edges, and four total structure factors S(K ) were derived. Differential
structure factors DAS(K ) around the Ni and Zr atoms were calculated through the difference
between the scattered intensities on a per-atom scale obtained at incident photon energy pairs
(8330, 9455 eV) and (15622, 17993 eV). The contribution of the partial SNi−Ni(K ) for the
Ni-DAS(K ) factor is six times bigger than the one for the S(K ) factors. Then, the use of the
Ni-DAS(K ) factor with four S(K ) factors as input data for the RMC simulations has permitted
us to obtain more stable partial SNi−Ni(K ), SNi−Zr(K ) and SZr−Zr(K ) factors. The partial Si j(K )
factors are very close to those reported earlier for the amorphous NiZr2 alloy. The structural
data (coordination numbers and interatomic distances) for the first neighbors for both
amorphous NiZr2 and NiZr3 alloys are also very similar.

1. Introduction

The physical properties of amorphous materials are strongly
dependent on the configuration of the first neighbors. Due
to absence of long-range order in these materials, the
determination of their local atomic structures is a difficult task
and it has been overcome through the combination of different
diffraction and spectroscopic techniques and also simulation
and modeling.

From a fundamental point of view, the Ni–Zr system
has been attracting attention because amorphous phases,
with different chemical compositions can be produced using
different techniques such as melting spinning, mechanical
alloying, etc. Thus, it offers an opportunity to study the
evolution of the local atomic structure of Nix Zr1−x alloys with
increasing Ni content and also to compare the local atomic
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Catarina, 88040-900 Florianopolis, Santa Catarina, Brazil.
4 Permanent address: Synchrotron SOLEIL-L’Orme des Merisiers Saint-
Auban–BP 48 91192 Gif-sur-Yvette cedex, France.

structures present in a particular amorphous alloy prepared by
different techniques.

The atomic structure of amorphous alloys containing N
chemical elements is described by N(N +1)/2 pair correlation
functions Gi j(r) that are related to the total structure factor
S(K ) through a Fourier transformation. Thus, to obtain
the N(N + 1)/2 Gi j(r) functions, we need N{N + 1)/2
independent S(K ) factors. For a binary alloy, the three
independent S(K ) can be obtained through the following
techniques: (1) isomorphous substitution [1], (2) isotope
substitution [2], and (3) anomalous wide angle x-ray scattering
(AWAXS) [3, 4]. The use of AWAXS consists of turning
the energy of the incident x-ray beam close to the K-edge
of a specific atom of the alloy and promoting a resonant
interaction with the electrons of that atom. For example,
for an amorphous Nix Zr1−x alloy, the three independent
S(K ) factors can be measured selecting energies close and
away from the K-edges of Ni and Zr atoms. However, the
matrix formed by the weights of the three S(K ) factors is
ill-conditioned, a fact that compromises the determination
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of the partialSNi−Ni(K ), SNi−Zr(K ) and SZr−Zr (K ) structure
factors.

Trying to overcome this difficulty, Fuoss and co-
workers [3, 4] implemented the differential anomalous
scattering (DAS) approach proposed by Schevchik [5, 6].
A differential anomalous scattering factor DAS(K ) can be
obtained from the AWAXS measurements performed at two
energies just below the K-edge of a selected atom making the
difference between the normalized scattered intensities on a
per-atom scale (see equation (5) below). This factor describes
the chemical environment around this atom because all the
correlations not involving this atom cancel out since only its
atomic scattering factor changes appreciably.

Almost two decades ago, de Lima and co-workers used
the DAS approach to study a melt-spun amorphous NiZr3

alloy. The results were reported in [7]. Later, in another
study, de Lima et al [8] following a suggestion by Munro [9],
used a combination of AWAXS S(K ) and DAS(K ) factors
measured for an amorphous Ni64Zr36 alloy together with the
matrix inversion method to obtain more stable SNi−Ni(K ),
SNi−Zr(K ) and SZr−Zr(K ) structure factors. The Si j (K ) factors
agreed very well with those obtained previously for the same
sample using the isotope substitution and neutron diffraction
techniques [10]. The combination of S(K ) and DAS(K )
factors substantially reduced the conditioning number of the
matrix formed by the weights [11] of the factors. Later, the
same procedure was applied to the amorphous NiZr3 alloy, in
which the maximum contribution of the SNi−Ni(K ) factor was
smaller than 5% for the S(K ) factors. Its contribution reached
18% for the Ni-DAS(K ) factor. The SZr−Zr(K ) factor obtained
showed a high stability, while the SNi−Ni(K ) and SNi−Zr(K )
presented an instability in the low-K range.

The reverse Monte Carlo (RMC) simulation method has
been successfully used for structural modeling of amorphous
structures. This method uses S(K ) factors derived from
neutron and/or x-ray measurements. Recently, de Lima et al
[12] modeled the amorphous structure of an amorphous NiZr2

alloy using the RMC method and AWAXS S(K ) factors as
input data. In that alloy, the maximum contribution of the
SNi−Ni(K ) factor was of 10% for the S(K ) factors. The
SNi−Ni(K ), SNi−Zr(K ) and SZr−Zr(K ) structure factors agreed
very well with those reported in the literature [2], showing
that the RMC method is appropriate to investigate dilute binary
amorphous alloys.

The excellent results obtained for the amorphous NiZr2

alloy motivated us to apply the RMC simulations to the
amorphous NiZr3 alloy studied previously using the DAS
approach [7]. Another important point is the contribution
of the SNi−Ni(K ) factor for the Ni-DAS(K ) factor (≈18%),
suggesting that more stable SNi−Ni(K ), SNi−Zr(K ) and
SZr−Zr(K ) factors can be obtained if the S(K ) and Ni-DAS(K )
factors are used together as input data. The literature does not
report studies involving the use of the DAS(K ) factor as input
data for the RMC simulations. Thus, the aim of this paper is to
report the partial Si j(K ) factors obtained considering the S(K )
and Ni-DAS(K ) factors as input data.

2. Theoretical background

2.1. Total and partial structure factors

According to Faber and Ziman [13], S(K ) is obtained for a
binary alloy from the normalized scattered intensity on a per-
atom scale Ia(K ) as follows:

S(K ) = Ia(K )− [〈 f 2(K )〉 − 〈 f (K )〉2]
〈 f (K )〉2

(1)

=
2∑

i, j=1

Wi j(K )Si j (K ), (2)

where K is the transferred momentum and Wi j(K ) are the
weights of the Si j(K ) factors, which are given by

Wi j (K ) = ci c j fi (K ) f j (K )

〈 f (K )〉2
, (3)

〈 f 2(K )〉 =
∑

i

ci f 2
i (K ),

and

〈 f (K )〉2 =
[∑

i

ci fi (K )

]2

.

Here, K = 4π sin θ
λ

, ci is the concentration, fi (K , E) =
f0(K ) + f ′(E) + i f ′′(E) is the atomic scattering factor, and
f ′(E) and f ′′(E) are the anomalous dispersion terms.

The Gi j(r) functions are related to the Si j (K ) through a
Fourier transformation

Gi j(r) = 1 + (1/2π2ρ0r)
∫ ∞

0
K [Si j(K )− 1] sin(Kr) dK .

(4)
From the first maxima of the Gi j(r) functions the interatomic
distances for the first neighbors are obtained.

2.2. Differential structure factor

Using the Faber–Ziman formalism [13], the DAS (K , Em, En)

factor about a selected atom of the alloy is obtained as follows

DAS(K , Em, En)

= [Ia(K , Em)− Ia(K , En)] − [LS(K , Em)− LS(K , En)]
〈 f (K , Em)〉2 − 〈 f (K , En)〉2

(5)

=
∑

j

Ui j(K , Em , En)Si j (K ), (6)

where LS(K , E) = 〈 f 2(K , E)〉 − 〈 f (K , E)〉2 is the Laue
scattering term and

Ui j(K , Em, En)

= ci c j [ fi (K , Em) f j (K , Em)− fi (K , En) f j (K , En)]
〈 f (K , Em)〉2 − 〈 f (K , En)〉2

. (7)

For i �= j the weight Ui j(K , Em, En) must be multiplied by
2. The letters m and n mean the incident photon energies
just below the K-edge of the selected atom. For amorphous
Nix Zr1−x alloys, the Ni-DAS(K ) and Zr-DAS(K ) factors
contain structural information regarding the SNi−Ni(K ) +
SNi−Zr(K ) and SZr−Zr(K )+ SZr−Ni(K ) factors, respectively.
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2.3. Reverse Monte Carlo method

The paper by Tucker et al [14] gives an excellent review of the
RMC method and its application to crystalline and amorphous
materials.

The RMC method is based on statistical mechanics, and
its basic idea and the algorithm are described elsewhere (see
articles cited in [12]). Its application for modeling the structure
of noncrystalline materials uses as a starting point one or more
experimental S(K ) factors, and has the purpose of generating
static atomic configurations by a procedure explicitly designed
to give the best agreement with experimental data. It bypasses
the need for representations of the interatomic forces or
atomic potentials. The best match between the simulated
and experimental S(K ) factors indicates that the static atomic
configuration generated may be close to reality and may also
allow an understanding of the atomic structure as well as the
search for insights behind the raw data. In order to obtain the
most consistent atomic configurations, more than one S(K )
factor should be used.

The RMC method takes into account the effects of
experimental resolution [14]. Thus, it is important to determine
the experimental S(K ) factors in a K -range as large as
possible (typically 50 Å

−1
) in order to achieve the best possible

resolution in the G(r) function. According to the sampling
theorem, the resolution �r is given as π/Kmax, where Kmax

is the maximum value of K achieved in the measurement of
S(K ).

The forward Fourier transforms of the K [S(K ) − 1] to
obtain the G(r) function is straightforward, but it is subject to a
problem that arises from the fact that the data for S(K ) extend
only to some maximum value of K . The effect of the finite
range of K on the Fourier transform is to introduce spurious
ripple peaks in the computed G(r) function. This problem can
be avoided by multiplying K [S(K )− 1] by the Lorch function
M(K ) = sin(πK/Kmax)

πK/Kmax
[15], which decreases smoothly to zero

at Kmax. However, the Fourier transform of the modified form
of K [S(K ) − 1] will then be convoluted with the Fourier
transform of M(K ), artificially broadening the peaks in the
G(r) function. In order to overcome this problem the RMC
method can be used to obtain a G(r) function whose Fourier
transform best matches the experimental K [S(K ) − 1] data.
It is important to note that although the spurious ripple peaks
into the computed G(r) function are overcome the effects of
experimental resolution remain.

The starting point when using the RMC method to
study noncrystalline materials is to generate an initial
configuration of atoms (a random distribution of atoms)
without unreasonably short interatomic distances. An RMC
simulation will evolve to maximize the amount of disorder
(entropy) in the configurations generated. Thus, it will give the
most disordered atomic configurations that are consistent with
the experimental data. There may be a range of configurations
that match the data, with different degrees of disorder. Only by
maximizing the range of experimental data can this problem be
minimized. In order to obtain the most disordered final atomic
configuration that is consistent with the experimental data, two
preliminary procedures are commonly used: (i) in the initial
atomic configuration, at the beginning, minimum approach

(cutoff) distances �i j between the atomic centers are fixed to
act as constraints on the short-range structure, and (ii) entropy
maximization of the atomic configuration. This step ensures
that the model will not be trapped in a local minimum and will,
instead, converge on the global minimum.

The individual pair distribution Gi j(r) functions are
defined as

Gi j(r) = Ni j (r)

4πρ0r 2�r
,

where Ni j (r) is the number of atoms of type j lying within the
range of distances between r and r + dr from any atom of type
i , and ρi = ciρ0.

During the RMC simulation process the following
function is minimized:

ψ2 = 1

δ

m∑

i=1

[SRMC(Ki )− S(Ki )]2.

The sum is over m experimental points and δ is related
to the experimental error in S(K ). In order to minimize the
	 function, atoms are selected at random and moved small
random distances. If the move reduces 	 , it is accepted. If the
move increases 	 , it is accepted with the probability

P = exp(−�ψ2/2).

As the process is iterated 	2 decreases until it reaches a
global equilibrium value. Thus, in principle, the final atomic
configuration corresponding to the equilibrium is the most
disordered and consistent with the experimental data. Using
the Gi j(r) and Si j (K ) functions corresponding to the final
atomic configuration, the coordination numbers, interatomic
distances and bond-angle distributions can be calculated.

3. Experimental procedure

Melt-spun amorphous NiZr3 ribbons ≈30 μm thick and 1 mm
wide were prepared. The measured density of the ribbons
was ρ = 7.40 g cm−3 or 0.05364 atoms Å

−3
. For the

AWAXS measurements, several ribbons were carefully aligned
and glued on a metallic holder with a central rectangular hole
to make a sample.

The AWAXS measurements were performed at the LURE
(Orsay, France), in 1985, using the DCI synchrotron radiation
source. The experimental conditions were the same as
used for the amorphous NiZr2 alloy, which are detailed
in [12]. The sample was not in a vacuum during the AWAXS
measurements. In order to subtract the contribution of the air
scattering in the low-K range for the AWAXS measurements,
an air scattering pattern was measured and the procedure
described in [16] was used. The data reduction procedure is
described in [12] and will not be repeated here. The RMC
package program (version 3) was downloaded from the site
http://www.studsvik.uu.se.

4. Results and discussion

The S(K ) factors measured at incident photon energies of
15622 and 17993 eV reached a value of Kmax = 15.45 Å

−1
,
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1 2 3 4 5 6 7 8

8330 eV

9455 eV
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S
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)
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Figure 1. AWAXS total structure factors S(K ): experimental (thick
solid lines) and simulated (open circle lines).

while the values for those measured at 8330 and 9455 eV
were 7.80 and 9 Å

−1
, respectively. Thus, the best resolution

reached in the G(r) function was �r ≈ 0.21 Å. However, in
order to obtain the best consistent atomic configuration, the Ni-
DAS (K ) and S(K ) factors will be used as input data for the
RMC simulations. For that, the factors must have the same K -
range (Kmax = 7.80 Å

−1
), reducing the resolution of the G(r)

function for �r ≈ 0.40 Å.
Figures 1 and 2 show the S(K ) and Ni-DAS(K ) factors

(thick solid lines) measured for the incident photon energies
listed in table 1. This table also gives the values of the
anomalous dispersion f ′(E) and f ′′(E) for each energy used
in the AWAXS measurements. The Ni-DAS(K ) factor was
calculated using the normalized scattered intensities on a per-
atom scale obtained at the incident photon energy pair (9455,
8330 eV) and following equation (5). This factor is the same
as reported in [16]. The S(K ) factors are a weighted sum
of the SNi−Ni(K ), SNi−Zr(K ) and SZr−Zr(K ) factors, while
the Ni-DAS(K ) factor is a weighted sum involving only the
SNi−Ni(K ), SNi−Zr(K ) factors. The values of the weights
Wi j(K ) and Ui j(K , Em, En) depend on the incident photon
energy through the atomic scattering factor fi (K ) of the Ni
and Zr atoms. The smallest and greatest contributions of the
SNi−Ni(K ) factor for the S(K ) factors occur at energies of 8330
and 17993 eV, respectively, while the opposite occurs with
SZr−Zr(K ). Thus, the present changes in these S(K ) factors
are associated with changes in the f ′(E) and f ′′(E) values,
mainly with the f ′(E) term. At K = 1.0 Å

−1
, the maximum

contributions of the SNi−Ni(K ), SNi−Zr(K ) and SZr−Zr(K )
factors for the S(K ) factors are 5.4%, 35.6% and 74.7%,
respectively, while the contribution of the SNi−Ni(K ) factor for
the Ni-DAS(K ) factor is 18.3%. This last value suggests that
more stable SNi−Ni(K ) and SNi−Zr(K ) factors can be obtained
considering the S(K ) and Ni-DAS(K ) factors as input data for
the RMC simulations. In order to evaluate the influence of the
Ni-DAS(K ) factor in the simulated structure, we separated the
input data in two sets, and they were considered separately.
The first set is only formed by the four S(K ) factors, while the
second one comprises the four S(K ) and Ni-DAS(K ) factors.

1 2 3 4 5 6 7 8

Ni-DAS

17985 eV

K (Å-1)

S
(K

)a
 n

d 
D

A
S

(K
)

Figure 2. AWAXS total structure S(K ) and Ni-DAS(K ) factors:
experimental (thick solid lines) and simulated (open circle lines).

Table 1. Incident photon energy and f ′, f ′′ values.

Energy (eV) f ′
Ni f ′′

Ni f ′
Zr f ′′

Zr

8 330 −7.866 1.206 −0.366 2.113
9 455 −1.416 3.158 −0.554 1.692

15 622 0.245 1.346 −1.822 0.679
17 993 0.269 1.056 −7.769 1.227

For the RMC simulations, the density value ρ0 =
0.05364 atoms Å

−3
(7.40 g cm3) and 5000 atoms (1250 Ni and

3750 Zr) were used to generate an initial random configuration,
without unreasonably short interatomic distances, into a cubic
box of edge L = 45 Å. It is well known that the Gi j(r)
functions have the first neighbor shells well represented by one
or more Gaussian functions. With the exception of the pre-
peaks associated with the chemical intermediate range order,
those located before the first shell have no physical meaning.
These features should be pursued in any method used for
modeling the atomic structure of amorphous materials. The
literature reports that the amorphous Ni–Zr alloys show pre-
peaks [8, 11, 12]. We have assumed cutoff distances �i j

in the RMC simulations to act as constraints on the short-
range structure, and these were carefully investigated. In the
absence of a direct Fourier transform, there are no criteria
for choosing them; however, some physical considerations
about the types of atoms as well as their contents in the alloy
may be useful [17]. The atomic radii of Ni and Zr atoms
are 1.25 Å and 1.60 Å, respectively; the Ni content in the
amorphous NiZr3 alloy is 25 at.% (diluted alloy). Thus, the
value of �Ni−Ni may be greater than those of �Ni−Zr and
�Zr−Zr. Based on these considerations, several sets of cutoff
distances �i j were examined. Each �i j set was introduced in
the initial random configuration before it was submitted to a
process to maximize the amount of disorder (entropy). This
process is well described in the RMC manual. After this, the
configuration and the S(K ) and Ni-DAS(K ) factors were used
for the RMC simulation [18].

For the second input data set, the best simulations were
reached considering the �Ni−Ni = 2.30 Å and �Ni−Zr =

4
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1 2 3 4 5 6 7 8

Ni-Ni

Ni-Zr

Zr-Zr

K (Å-1)

S
ij 

(K
)

Figure 3. Partial structure factors Si j (K ) obtained using the four
S(K ) and the Ni-DAS(K ) factors (thick black lines) and only the
four S(K ) factors (thick gray lines).

�Zr−Zr = 2.10 Å values. In order to verify the influence of
the Ni-DAS(K ) factors for the results, these values were kept
when the first input data set was considered. Also, to minimize
possible errors related to the air subtraction procedure,
the RMC simulations were only performed considering K
ranging from 1 to 7.80 Å

−1
. The simulated S(K )RMC

and Ni-DASRMC(K ) factors (open circle lines) are shown in
figures 1 and 2, where one can see an excellent agreement with
the experimental data.

Figure 3 shows the SNi−Ni(K ), SNi−Zr(K ) and SZr−Zr(K )
factors obtained using the first (thick gray lines) and second
(thick black lines) input data sets. A comparison of the Si j(K )
factors obtained using these two input data sets shows that they
have the same shapes and details. They differ only in the region
located before the main peaks, where one can clearly see the
presence of the pre-peaks related to the chemical intermediate
order range. These pre-peaks are more intense in the Si j(K )
factors obtained using the second input data set due to the
higher contribution of the SNi−Ni(K ) for the Ni-DAS(K ) factor.

Figure 4 shows the GNi−Ni(r), GNi−Zr(r) and GZr−Zr(r)
functions obtained using the first (thick gray lines) and second
(thick black lines) input data sets. A comparison of the Gi j(r)
functions shows that the use of the second input data set
(S(K ) and Ni-DAS(K ) factors) gives functions that are clearly
better defined, with the first neighbor shells totally defined and
having no spurious peaks. From this figure one can also see
that the first neighbor shells are well isolated. However, the
shells related to the Ni–Ni and Ni–Zr neighbors are formed
of sub-shells. That related to the Zr–Zr neighbors does not
show sub-shells. It is interesting to note that the second
and third neighbor shells of the GNi−Ni(r) and GNi−Zr(r)
functions are split into two sub-shells, indicating the presence
of chemical intermediate range order, while in the GZr−Zr(r)
function this splitting is absent. The spurious peaks located at
r = 2.16 Å are related to the assumed �i j values. However,
they do not influence the results. The interatomic distances for
the first neighbors are those corresponding to the first maxima
on the Gi j(r) functions, and the coordination numbers were

0 2 4 6 8

Ni-Ni

Ni-Zr

Zr-Zr

r (Å)

G
ij 

(r
)

10 12 14 16 18 20 22

Figure 4. Partial distribution functions Gij (r) obtained using the
four S(K ) and the Ni-DAS(K ) factors (thick black lines) and just the
four S(K ) factors (thick gray lines).

-1.0 -0.5 0.0 0.5 1.0

Zr-Zr-Ni

Ni-Zr-Ni

Zr-Zr-Zr

Zr-Ni-Zr

Zr-Ni-Ni

Ni-Ni-Ni

F

E

β 
[c

os
(θ

)]

cos(θ)

Figure 5. Distribution of the cosine of the bond-angles, β[cos(θ)],
for Ni–Ni–Ni, Zr–Ni–Zr, Zr–Ni–Ni, Zr–Zr–Zr, Ni–Zr–Ni and
Zr–Zr–Ni, calculated using the final configuration obtained from the
RMC simulations.

calculated from the final atomic configuration. For this, the
upper limit values of 4.16, 4.16 and 3.92 Å for the Ni–Ni, Ni–
Zr and Zr–Zr first shells were fixed. To establish error bars on
the coordination numbers intermediate values were considered.
The obtained values are listed in table 2.

It is known that the orientational correlations in disordered
structures could be well represented by the distribution of the
cosine of the bond-angles β[cos(θ)]. Bonds were defined
by neighbors within the first coordination shell. In order
to establish error bars on the bond-angle distributions, the
same intermediate and upper limit values used to calculate the
coordination numbers were applied. Figure 5 shows the Ni–
Ni–Ni, Zr–Ni–Ni, Zr–Ni–Zr, Zr–Zr–Zr, Ni–Zr–Ni and Zr–Zr–
Ni bond-angle distributions (the angle is centered at the middle
atom) obtained from the final atomic configuration. From this
figure one can see that the curves for the Ni–Ni–Ni and Ni–Zr–
Ni cosine bond-angle distributions shows very poor statistics,
suggesting that the coordination numbers corresponding to the

5
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Table 2. Structural parameter values for the amorphous NiZr3 alloy.

Structural
parameters NNi−Ni r (Å) NNi−Zr r (Å) NZr−Zr r (Å)

This work 2.90 ± 0.74 2.72 9.42 ± 1.74 2.80 10.54 ± 0.10 3.20

a-NiZr3 [7]
(DAS)

�1.30 �4.10 3.00a

6.00
2.76
3.04

0.56c

2.50
7.60

2.76
3.04
3.40

a-NiZr3 [11]
(Matrix
inversion)

— — 9.95 2.83 10.80 3.22

a-NiZr2 [12] 3.20 2.68 6.90b

2.30
2.73
3.62

10.10 3.25

a-Ni24.1Zr75.9

[20]
— — 14.50 2.70 8.40 3.16

c-NiZr2 [21] 2.00 2.63 8.00 2.79 1.00d

2.00
4.00
4.00

2.82
3.17
3.30
3.47

a There are 9 Ni–Zr pairs at 〈r〉 = 2.95 Å.
b There are 9.2 Zr–Zr pairs at 〈r〉 = 2.95 Å.
c There are 10.66 Zr–Zr pairs at 〈r〉 = 3.28 Å.
d There are 11 Zr–Zr pairs at 〈r〉 = 3.29 Å.

first neighbors Ni–Ni and Zr–Ni are relatively small. The
Ni–Ni–Ni, Zr–Ni–Zr and Zr–Ni–Ni bond-angle distribution
curves show peaks centered at about the following values:
cos(θ) = −0.271 ± 0.039 (θ = 103.4◦–108.1◦) and cos(θ) =
0.576 ± 0.049 (θ = 51.3◦–58.2◦); cos(θ) = −0.470 ± 0.049
(θ = 114.9◦–121.3◦) and cos(θ) = 0.448 ± 0.047 (θ =
60.3◦–66.4◦); cos(θ) = −0.437 ± 0.046 (θ = 113.0◦–
118.9◦) and cos(θ) = 0.550 ± 0.058 (θ = 52.5◦–60.5◦),
respectively, while Zr–Zr–Zr, Ni–Zr–Ni and Zr–Zr–Ni display
peaks centered about cos(θ) = −0.353 ± 0.016 (θ = 109.7◦–
111.6◦) and cos(θ) = 0.512 ± 0.011 (θ = 58.5◦–59.9◦);
cos(θ) = −0.230 ± 0.015 (θ = 102.4◦–104.2◦) and cos(θ) =
0.589 ± 0.021 (θ = 52.4◦–55.4◦); cos(θ) = −0.318 ± 0.014
(θ = 107.7◦–109.4◦) and cos(θ) = 0.585±0.020 (θ = 52.8◦–
55.6◦), respectively. The triangle and ideal tetrahedral angles
are θ = 60◦ and 109.5◦, respectively. In another paper [12], we
modeled the amorphous structure of the NiZr2 alloy through
the RMC simulations. The bond-angle distribution curves
reported in that paper are similar to those displayed in figure 5.
Thus, the same physical interpretation given in that paper can
be directly transported for the amorphous NiZr3 alloy, and it
will be not repeated here.

According to table 2, the Ni and Zr atoms have on
average 14.8 (3.6 Ni–Ni + 11.2 Ni–Zr) and 14.3 (3.7 Zr–
Ni + 10.6 Zr–Zr) nearest neighbors, respectively. These
numbers indicate that the Ni and Zr atoms have equivalent roles
on a topological network formed by spheres of very similar
sizes. This evidence is supported by the similarity between the
Zr–Zr–Zr and Zr–Ni–Zr bond-angle distribution curves shown
in figure 5.

The chemical short-range order (CSRO) in the amorphous
alloy is obtained using the Warren parameter αw given

by [19]

αw = 1.0

− NNi−Zr

cZr[cNi(NZr−Zr + NZr−Ni)+ cZr(NNi−Ni + NNi−Zr)] ,
where Ni j are the coordination numbers listed in table 2. The
αw parameter is null for a random distribution. If there is a
preference for forming unlike pairs in the alloy, it becomes
negative. Otherwise, it is positive if homopolar pairs are
preferred. Using the Ni j for the amorphous NiZr3 alloy
given in table 2, the CSRO parameter was calculated, and the
value found was αw = −0.018, suggesting a preference for
formation of a random distribution.

It is interesting to compare the structural parameters
(coordination numbers and interatomic distances) obtained
for the amorphous NiZr3 alloy using the RMC method
with those reported earlier for the same alloy, which were
obtained through the DAS approach [7] and matrix inversion
method [11]. The structural parameters for the first neighbors
obtained in those works are listed in table 2. In those works it
was not possible to find the coordination number for the Ni–
Ni pairs, while in the present study this number is precisely
determined. The number of Ni–Zr pairs obtained in this study
is slightly larger than those reported previously, and the number
of Zr–Zr pairs is similar.

Due to closeness in composition of the amorphous NiZr2

and NiZr3 alloys, it is also interesting to compare the
Si j(K ) factors as well as the structural parameters found for
these alloys. Figure 6 shows the Si j (K ) factors obtained
for amorphous NiZr2 (thick gray lines) together with those
obtained in this study (thick black lines). The structural
parameters reported in [12] for the amorphous NiZr2 alloy
are listed in table 2. From figure 6 one can see that the
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Figure 6. Partial structure factors Si j (K ): for the amorphous NiZr3

alloy (thick black lines) and for the amorphous NiZr2 alloy (thick
gray lines).

Si j(K ) factors obtained for both amorphous NiZr2 and NiZr3

alloys are very similar. This similarity is also observed for the
structural parameters.

Paul and Frahm [20] reported values for the structural
parameters of an amorphous Ni24.1Zr75.9 alloy and they are
listed in table 2. They did not report coordination numbers
for the Ni–Ni first neighbors. We reported the same results
in previous studies [7, 11]. The number of Ni–Zr pairs
reported by them is substantially larger than those found in
our works, while the opposite is found for the Zr–Zr pairs.
The interatomic distances reported by them for the Ni–Zr and
Zr–Zr pairs are similar to the average values found in our
works.

Due to closeness in composition of crystalline NiZr2

and amorphous NiZr3 phases, some similarity between the
short-range orders present in these phases may occur. Thus,
it is interesting to compare these local atomic structures.
For that, the structural data reported by Havinga et al
[21] for the tetragonal NiZr2 compound were used. These
data and the CRYSTAL OFFICE 98 software5 were used
to calculate the coordination numbers, interatomic distances
and bond-angles for the first neighbors. The calculated
values for the coordination numbers and interatomic distances
are listed in table 2. From this table one can see that
the calculated interatomic distances for the crystalline NiZr2

compound are similar to those found in this study. However,
the numbers of Ni–Ni and Ni–Zr pairs present in the
amorphous NiZr3 phase are greater than those found in
the crystalline NiZr2 compound, while the number of Zr–
Zr pairs is similar. The increase observed in the Ni–Ni
and Ni–Zr coordination numbers may be associated with
the amorphous phase density (ρ = 7.40 g cm−3), which
is 2.26% bigger than that for the crystalline compound
(ρ = 7.233 g cm−3).

5 Atomic Softek, 70 Longwood Road North, Hamilton, Ontario, Canada
L8S 3V4.

5. Conclusions

The amorphous NiZr3 alloy was investigated using AWAXS,
DAS, and RMC simulation techniques. Several conclusions
are obtained from this study. The main ones are as follows.

The use of the Ni-DAS(K ) factor together with the
four AWAXS S(K ) factors as input data for the RMC
simulations has permitted us to obtain more stable SNi−Ni(K )
and SNi−Zr(K ) factors. The obtained SNi−Ni(K ), SNi−Zr(K )
and SZr−Zr(K ) factors are very similar to those reported earlier
for the amorphous NiZr2 alloy. The structural data for the first
neighbors for both amorphous NiZr2 and NiZr3 alloys are also
very similar.

The results reported in this study show that the RMC
method is appropriate for investigating dilute amorphous
samples, in which the content of the minority chemical
component is about of 25 at.%. However, due to the small
contribution of the partial structure factor associated with the
minority component for the S(K ) factors, whenever possible a
DAS(K ) factor around the K-edge of the minority component
must be measured because its contribution to the DAS(K )
factor is several times larger. The use of the DAS(K ) and
independent S(K ) factors as input data for the RMC simulation
allows us to obtain more stable Si j (K ) factors.

In another study, some resemblance was observed between
the local atomic structures present in the tetragonal NiZr2

and amorphous NiZr2 phases. Now, we also observed some
resemblance between the local atomic structures present in this
crystal and the amorphous NiZr3 phase.
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